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Abstract

Biometrics-based verification is an effective approach to personal authentication using biological features extracted from the individual. In

this paper, we propose specific verification technology by making use of hand-based features. Two hand-based features, the hand geometry

and the palmprint, are simultaneously grabbed by the CCD camera-based devices. Basically, geometrical features of the hands are used to

roughly verify the identity. The samples possessing the confused hand shapes should be to re-check by the palmprint features. First, the

crucial points and the ROI of palmprint are determined in the preprocessing stage. The hand shape features of length 11 are computed from

these detected points. Next, the multi-resolutional palmprint features are extracted from the ROI and the three middle fingers. In that way the

reference vectors are obtained for computing the similarity values in various resolutions. In addition, the various verified results in multiple

resolutions are integrated to achieve a better performance by using the positive Boolean function (PBF) and the bootstrapping method.

Experimental results were conducted to show the effectiveness of our proposed approaches.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Personal authentication (PA), using biometric features

[1,2], has been attracting much attention lately. Using

biological features as the personal identification number

(PIN) replaces the approaches using digits. In password-

based systems, people use different passwords for different

systems. They usually forget the passwords or confuse them.

Once people forget their passwords, they have to reset all

system parameters to prevent illegal use. Biometrics provide

a perfect solution to overcome these problems. They possess

the identical, portable, and arduous duplicate characteristics.

Many researchers [1–4] involved in this field have developed

lots of effective verification algorithms and have applied

these techniques to many vision-based security systems.

Phillips [3] summarized the advantages and disadvantages of

the biometrics features used in network-based applications.

The Association for Biometrics in England [4] proposed

five steps to choose the proper biometrics strategies for the

security requirement of systems.

In this paper, we will focus on the hand-based features for

PA. Two types of hand-based features, the geometry-based

features and the palmprint features, have been successfully

used in many literatures. Golfarelli et al. [2] extracted the

hand shape features of length 17 to verify personal identity.

They set up some latches on a plane to fix the position of

hands. The images of size 640 by 512 were grabbed from a

CCD camera. The backlight effect was used to acquire high

contrasted images. These image can be easily segmented

through a constant threshold. Besides, five features of finger

length, seven features of finger width, two features of palm

width, and three features of hand thickness were extracted

from the thresholded images. Zunkei [5] introduced a

commercial product of hand geometry-based recognition

and applied it to many access control systems. Joshi et al. [6]

captured an image of the middle finger by using a CCD

camera to generate the wide line integrated profile (WLIP) of

length 472. They also used the normalized correlation

function to compute the similarity values between the input

sample and the reference templates.

Zhang et al. [7–10] proposed lots of verification methods

for personal identification via palmprint features. They

applied the datum point invariant property and the line

feature matching technique to do the verification process

[7]. In Ref. [8], they proposed a texture-based feature

extraction method to obtain the global attributes of a palm.

A dynamic selection scheme was also designed to ensure
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that the palmprint samples are correctly and effectively

classified in a large database [8]. Moreover, they also

proposed a hierarchical palmprint coding scheme for

effective and efficient palmprint verification and identifi-

cation in large databases [9]. Four-level features, global

geometry-based key-point distance, global texture energy,

fuzzy interest line, and local directional texture energy,

were defined to facilitate the coarse-to-fine matching

process. Furthermore, Zhang et al. [10] designed an online

palmprint identification system by using the low resolution

images. Two parts, including an online palmprint acqui-

sition device and a fast recognition algorithm, were

proposed in their approach. In our previous work [11], we

have proposed the scanner-based capturing environment to

obtain the palmprint images.

Recently, multi-modal techniques are another approach

adopted by many researchers. Multiple biometric features

have been used to increase the performance of authentica-

tion systems. Chibelushi et al. [12] made a review of speech-

based bimodal recognition. They combined auditory and

visual modalities instead of a single modality. Sanderson

and Paliwal [13] also integrated the audio and visual

information in a multi-modal verification system. In

addition, Chatzis et al. [14] proposed three fusion schemes

to combine the still face and speech features. Prabhakar and

Jain [15] proposed five kinds of multi-modal biometric

systems for PA. The finger print and the face features are

integrated by the multiple sensor, multiple biometric,

multiple impressions, multiple finger, and multiple matcher

systems. These five kinds of multi-modal biometric systems

can be extended for all possible biometrics features. All of

their approaches improved the performance of the system

with multi-modal features.

In this paper, hand-based features are utilized for PA as

shown in Fig. 1. We have designed a CCD camera-based

capturing device to grab the hand images as shown in Fig. 2.

This device would grab the hand shape and the palmprint

features simultaneously. First of all, users are asked to put

their right hand on the platform. The hand images are

captured by a CCD camera in the image-grabbing module.

These images are next segmented by making use of

the wavelet-based segmentation method. Two stages,

enrollment and verification, should be executed in authenti-

cation systems. Two kinds of hand-based features, including

the hand geometry and the palmprint features, are extracted

from the hand images in the enrollment stage. In the

verification stage, the coarse-to-fine strategy is utilized to

verify the input samples. The hand shape and the region of

interest (ROI) of palmprint are automatically extracted

according to the geometrical properties of the hand. For the

coarse-level verification strategy, the hand-shape features of

length 11 are extracted in the hand-geometry enrollment

module. The palmprint features of length 500 in four scales

are extracted from the ROI by using wavelet-based

decomposition approaches. In the fine-level verification

stage, the palmprint features of different scales are matched

with the corresponding reference templates. And then these

verified results are integrated to obtain the efficient

performance by using an optimal PBF.

The rest of this paper is organized as follows. In

Section 2, the hand images are segmented to find the

locations of the fingertips and the ROI of palmprint by using

the wavelet-based segmentation algorithm. The hand

geometrical features of length 11 are extracted next and

verified in Section 3. In Section 4, the palmprint features are

obtained for the fine-level verification task by using

Fig. 1. The coarse-to-fine authentication system using the hand-based features.

Fig. 2. The hand-based capturing device.
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the multiple scale fusion strategy. These palmprint features

represented in four scales are extracted from the three

middle fingers and the ROI. The principal component

analysis (PCA) and the generalized learning vector

quantization (GLVQ) techniques are reviewed and utilized

to generate the two-class centers in various scales. Finally,

the verified results in various scales are integrated to

generate the efficient verified results via the optimal PBF.

Some experimental results were implemented in Section 5

to show the effectiveness of our proposed approaches.

Finally, the conclusions are given in Section 6.

2. Wavelet-based hand segmentation

Image quality is the key ingredient in many pattern

recognition systems. The better the image quality, the

more effective the system will be. Moreover, designing

the verification algorithm does not need much effort. In

this paper, we designed a CCD camera-based capturing

device as shown in Fig. 2. This device can simultaneously

capture the hand shape and the palmprint features. We

developed a wavelet-based segmentation algorithm to

automatically segment the hand image and locate the

fingertips and the ROI of palmprint. This algorithm finds

the edge points of the hand or fingers by using the wavelet

transform. As we know, the edge points locate at the zero-

crossing points of the second derivation of the original

signal. Wen et al. [16] utilized this technique to segment

the on-line signature patterns. Based on the segmented

and detected edge points, the geometrical features of

hands are given in this section.

Consider the hand image as shown in Fig. 3, six sticks were

previously fixed manually at S0; S1;…; S5; their correspond-

ing coordinates being ðxS0; yS0Þ; ðxS1; yS1Þ;…; ðxS5; yS5Þ: Next,

the edge points of the three middle fingers (e.g. the

index finger, the middle finger, and the ring finger) were

found for the segmentation of the hand images. In our

experiments, the profile of an arbitrary horizontal line SMSN

(Fig. 3) is set with the equation y ¼ yS0 þ 70: The signals of

this profile are transformed by the wavelet transform. Several

low-frequency and high-frequency sub-band signals

in various scales are generated as depicted in Fig. 4. In

Wen’s approaches [16], the signature patterns were

segmented from the high-frequency sub-band signals at

scale 4. The edge points of the fingers at line SMSN in

Fig. 3 are found by the similar manner in the followings.

Since the capturing environment is well designed and

controlled, three fingers are located within the searching

range [1/8,7/8] of the image width. In Fig. 4d, the

zero-crossing points beyond the searching range are first

eliminated. The search range is next separated into three parts

based on sticks S4 and S5: The positions with local maximal

magnitude in each part are marked. Two edge points are found

at the zero-crossing points nearing to the marked position in

each part. Thus, points SA; SB; SC; SD; SE; SF in Fig. 3 are

obtained from the high-frequency sub-band signals at scale 4

in Fig. 4d. Similarly, the edge points of fingers

SG; SH ; SI ; SJ ; SK ; SL in Fig. 3 can also be obtained by the

above wavelet-based segmentation algorithm.

Next, the ROI P1P2P4P3 in Fig. 3 is automatically located

according to the geometrical properties of the hand. The three

central lines of fingers L1; L2; and L3 are first calculated from

those six segments SASB; SCSD; SESF ; SGSH ; SISJ ; and SKSL:

Secondly, the intersected point MS is computed from lines L2

and L4; where L4 is a horizontal line of y ¼ ðyS3 þ 2yS0Þ=3:

This is the starting point for determining the ROI of palmprint.

According to our experience and careful observation, two

lines P1P3 and P2P4 in ROI are parallel to line L2: Line P3P4

is also perpendicular to line L2:Therefore, the corner point P4

of the palm table is obtained from the intersection points of

lines P3P4 and L1; and P4 ¼ PS:Another intersection point of

lines L3 and P3P4 is RS: Thus, the palm table is defined to be a

rectangular area P1P2P4P3; where lP3P4l ¼ 1:2lRSPSl: In

addition, the three fingertips PE; ME; RE are found from the

zero-crossing points of the transformed signals of lines L1;L2;

and L3 at scale 4, respectively. The wavelet-based segmen-

tation algorithm is described in the followings.

Step 1: Input the coordinates of peg S0; i.e. ðxS0; yS0Þ:

Step 2: Find the edge points SA; SB; SC; SD; SE; SF in

line SMSN :

Fig. 3. The hand segmentation process.
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1. Extract the profile of line SMSN ; where SMSN :

y ¼ yS0 þ 70:

2. Decompose the profile of line SMSN into several signals

of the low-frequency sub-band Sfi and the high-

frequency sub-band Wfi; where i ¼ 1; 2; 3; 4 in this paper.

3. Find the edge points SA; SB; SC; SD; SE; SF from the

transformed signal Wf4 at scale 4.

Step 3: Find the edge points SG; SH ; SI ; SJ ; SK ; SL from

line L4 by repeating the segmentation process in Step 2.

1. Generate the profile of the horizontal line L5; where L5 :

y ¼ yS0
þ 130:

2. Decompose the profile of line L5 into several signals of

the low-frequency sub-band Sfi and the high-frequency

sub-band Wfi; where i ¼ 1; 2; 3; 4:

3. Find the edge points SG; SH ; SI ; SJ ; SK ; SL from the

transformed signal Wf4 at scale 4.

Step 4: Compute three equations of the lines L1; L2; and

L3 from these 12 points SA; SB;…; SL:

Step 5: Compute the intersection points PS;MS; and RS

from lines L1;L2;L3 and L4; respectively, where L4 : y ¼

ð2yS0 þ yS3Þ=3:

1. Determine the location of the point MS which is

intersected by lines L2 and L4:

2. Compute the equation of line P3P4 from point Ms and

line L2; where L2 ’ P3P4:

3. Find the intersection points PS and RS from lines P3P4

and L1; P3P4 and L3; respectively.

Step 6: Determine the four coordinates of ROI P1P2P3P4

from two points PS and RS; where lP3P4l ¼ 1:2lRsPsl:

3. Coarse-level verification using hand

geometrical features

PA using hand geometrical features provides an effective

performance in biometrics-based security systems.

Fig. 4. (a) The original signals, scale ¼ 0. (b)–(e) The high-frequency sub-bands of the wavelet transformed signals from scales 1 to 4.
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However, the geometrical shapes of hands will vary

significantly over time due to the wearing of rings, the

finger mails, or the pregnancy of women. Moreover, similar

and confused hand shapes of different individuals are other

factors making the hand geometry-based authentication

systems be used in a small database.

In this section, we reduce the false rejection rate (FRR) to

increase the tolerance of the change of hand shape by

checking the input samples in the looser criteria. Then, the

palmprint features as stated in Section 4, are adopted to

do the stricter verification task. This will reduce the mis-

verification error caused by the time factor.

Fig. 5 shows a hand image in which eleven geometrical

features are obtained from the wavelet-based segmentation and

the geometrical formulas. In these features, lines PAPB and

PCPD are perpendicular to line PEPF : Besides, lines PAPB

and PCPD are located at 1/3 and 2/3 places of line PEPF ;

respectively. The lengths of lines PAPB; PCPD; and PEPF are

set to be the features 1, 2, and 3. Similarly, features 4, 5,…,9

can be generated from the above procedure. In addition, the

lengths of lines PGPH and PIPJ represent the 10th and 11th

features, respectively. Here, lP2PI l ¼ 0:25lP2P4l; PIPJ ’

P3P4; and lP3P4l is the ROI width of palmprint. The value

0.25 is an arbitrary value smaller than 0.5 to find the edge

point PJ of the first finger. Based on points PI and PJ ; the 11th

is thus obtained. Of these features, the first nine denote the

finger shape and the last two denote the size of the palm table.

Suppose that M training samples of an individual X are

collected in the enrollment stage then, from the preceding

process, M vectors of length 11, denoted as f i ¼

ðfi1; fi2;…; fi11Þ; are generated, i ¼ 1; 2;…M: The sample

mean m ¼ ðm1;…;m11Þ and the covariance matrix S ¼

diagðs2
1;s

2
2;…;s2

11Þ are computed from these M vectors,

respectively. In the coarse-level verification module, the

Mahalanobis distance defined in Eq. (1) is used to evaluate the

similarity between the input sample and the mean of templates.

d2 ¼ ðx 2 mÞtS21ðx 2 mÞ ¼
X11

i¼1

xi 2 mi

si

� �2

: ð1Þ

Here, x is the feature vector of an input realization. This sample

is verified to determine whether it belongs to X or not.

If the distance is larger than a looser and pre-defined

threshold, the input sample is classified as being an attacker.

Otherwise, this sample would be re-checked in the

palmprint-based verification.

Since the capturing environment is well controlled, the

detection of edge points of fingers is very effective in the

previous section. The features of fingers are sometimes

varied due to the long finger mails. To solve this problem,

the coarse-to-fine scheme is proposed in this paper. In the

coarse-level verification phase, the tolerance is considered

by a looser threshold. If the testing sample passes the above

looser criterion, it should be rechecked by the palmprint

feature in the fine-level verification phase.

4. Fine-level verification using the palm-print features

When the input sample x satisfies the threshold value by

using the hand geometrical features in the coarse-level

verification module, it should be re-checked via the

palmprint features in the fine-level verification module. In

this section, we will extract the multi-resolutional palmprint

features from the three middle fingers and the ROI. The

dimensionality of these features should be reduced for the

simplification of the classifier design by the PCA approach.

Next, the GLVQ technique is applied to re-check the input

sample. Finally, an optimal positive Boolean function (PBF)

will be found to combine the verified results in various scales.

4.1. Feature extraction in multiple scales

Before stating the extraction process of the palmprint

features, let us summarize the PCA technique. Suppose

there are M training samples possessing the feature vectors

of length L then, the covariance matrix Mc is defined as

Mc ¼
XM
i¼1

ðx 2 mÞðx 2 mÞ0; ð2Þ

where m denotes the sample mean. The major K

eigenvectors ei corresponding with the largest K eigen-

values li comprise a K-dimensional sub-space calledFig. 5. Eleven hand geometrical features.
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eigenspace, where K p L: And, the rest of the eigenvectors

organize the residual subspace. Thus, the original space is

decomposed into two subspaces. A realization x of length L

can be projected into the eigenspace to obtain a new vector

V ¼ ½e1; e2;…; eK�
T ðx 2 mÞ: The original vector of length L

is represented by a new vector of length K; called distance in

feature space (DIFS). Turk and Pentland [17] applied this

approach to reduce the dimensionality of feature vectors for

face recognition. Hong and Jain [1] used the residual error

(DFFS) function to solve the face verification problem.

As described in the preceding sections, the ROI of

palmprint is automatically located in the hand segmentation

procedure. The palmprint features of multiple resolutions are

subsequently extracted from the ROI. In pattern recognition,

images are usually concatenated row by row to obtain
Fig. 6. Seven palm-print features.

Fig. 7. The ROC of the verification results using palmprint features in various low-frequency and high frequency sub-bands.
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the feature vectors. However, the dimensionality of feature

vectors of the whole image is too high to decrease the

complexity of classifier design. In this study, the palmprint

images are sub-sampled to obtain the profile of scanning line

for the dimensionality reduction. The profiles of seven

specified lines in ROI, as shown in Fig. 6, are extracted. Since

there are lots of redundant data in this area, seven lines

Q0Q8;Q1Q7…Q5Q9; and P2P3 are specified to extract the

feature vectors and used to represent the palmprint. It is worth

noting that line P1P4 is not taken into consideration because

point P1 is frequently located in the background. The

background pixels will be embedded in the profile of line

P1P4: In the profile of line P2P3; for example, the signals in

the multi-scales (Fig. 8) were generated by using the wavelet

transforms. Etemad and Chellappa [18] analyzed the

transformed signals of the face to compute the discriminant

power. In order to evaluate the discriminant power of

palmprint features in various sub-bands, an experiment was

performed. In this experiment, original signals were decom-

posed into four low-frequency sub-bands and three high-

frequency sub-bands. The template matching strategy was

adopted to calculate the distances between querying samples

and templates in verification process. The receiver operating

characteristics (ROC) curves are shown in Fig. 7. From

this figure, the discriminant power of the high-frequency

sub-band Wfi is less than that of the low-frequency sub-band

Sfi:Therefore, the signals of the high-frequency sub-band Wfi

are ignored in this paper. The low-frequency sub-band

signals Sfi of line P2P3 at scale i are normalized and defined

to be the feature vectors of the palmprint of length

L: Furthermore, seven feature vectors of length L are

catenated to denote the palmprint features of a specified

individual at scale i (Fig. 8).

In addition, the three middle fingers also include the

discriminant power. The profiles of these three fingers are

transformed and normalized to be three feature vectors of

length L: These 10 vectors are catenated to form a new

feature vector of length 10L at scale i to denote the

palmprint feature of an individual. Next, dimensionality

reduction is needed to reduce the complexity of the

verification algorithm by using the PCA methods. The

reduced feature vectors can be transmitted very fast in

network-based biometric verification applications. The

original feature vectors of length 10L can be projected to

obtain a vector of length K at a specified scale i: R feature

vectors Rfi of length K can be obtained with i ¼ 1; 2;…R:

Here, value K is set to 50 in this study since the first

50 components would contain more than 95% information

of the original data.

4.2. Generalized learning vector quantization

The main work in PA is to verify whether the input

sample belongs to an individual X or not. This is a two-

category classification problem. In this subsection, two

category centers, called centers ‘YES’ ðv1Þ and ‘NO’ ðv2Þ;

are determined by using the GLVQ method.

Assume that M training samples of an individual X are

collected and denoted as the data set DX : MN samples which

are randomly selected from another N persons are collected

Fig. 8. The low-frequency sub-band signals of line P2P3 from scales 0 to 3.
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to form the non-X data set D �X: In the GLVQ training

process, since the training samples in the data set DX are

relatively few as opposed to those in non-X data set D �X; M

samples of the individual X should be duplicated N times to

generate MN instances for the simplification of implemen-

tation. Plus the MN instances from another N persons, 2MN

instances are interlacedly inputted into the GLVQ process to

generate two category centers v1 and v2: The GLVQ

algorithm is the general case of learning vector quantization

(LVQ) method which was proposed by Kohonen [19]. Many

versions of GLVQ have been proposed from different

viewpoints [20–22]. In this paper, we adopted Sato’s

approach [20] to generate the two best category centers. The

updating rules for Sato’s method is briefly described below.

Consider a training sample x and two category centers v1

and v2: The relative distance function mðxÞ is defined as

mðxÞ ¼
d1 2 d2

d1 þ d2

; ð3Þ

where d1 ¼ lx 2 v1l
2

and d2 ¼ lx 2 v2l
2

are the squared

Euclidean distances for the sample x to centers v1 and v2;

respectively.

Suppose that center v1 is the nearer center for the sample

x and they belong to the same class, i.e. classðxÞ ¼

classðv1Þ: The updating rule for center v1 is designed as

v1ðt þ 1Þ ¼ v1ðtÞ þ a
›f

›m

d2

ðd1 þ d2Þ
2
ðx 2 v1ðtÞÞ: ð4Þ

On the other hand, if center v2 is the nearer center for the

sample x but they do not belong to the same class, i.e.

classðxÞ – classðv2Þ; then the learning rule for center v2 is

designed in the following formulation.

v2ðt þ 1Þ ¼ v2ðtÞ2 a
›f

›m

d1

ðd1 þ d2Þ
2
ðx 2 v2ðtÞÞ: ð5Þ

Here, ›f =›m ¼ f ðm; tÞð1 2 f ðm; tÞÞ in the above two

equations are defined to be a gain fact. f ðm; tÞ ¼

1=ð1 þ e2mtÞ is a sigmoid function and value a is set to

be 0.001 in this paper. The readers can refer more details

in Ref. [20].

In principle, if an input sample x is nearer to the class

center v1, i.e. mðxÞ , 0; it can be considered as the hand

image of person X: Otherwise, this input sample x should be

classified as an attacker’s hand image. In the enrollment

stage, all 2MN training samples are processed by the hand

segmentation, the feature extraction, and the GLVQ modules

to obtain R two-category centers ðv1;v2Þ1; ðv1;v2Þ2;…, and

ðv1;v2ÞR in R scales. The input sample x possessing R

palmprint feature vectors Rf1;Rf2;…RfR will match with

R two-category centers to obtain the R distance values

mðxÞ1;mðxÞ2;…;mðxÞR: These R distance values are used to

determine the verified results by the above principle. The

verification results for ten persons at four scales are shown in

Table 1. In this table, the values represent the false rejection

rate (FRR) and the false acceptance rate (FAR) in each cell,

respectively. The experiment will be stated in more detail in

Section 5. Consider the verified results for two individuals X

and Y as shown in Table 1, the verified results of identity X at

scale 0 or scale 3 are better than those at the other scales. The

results of Y at scale 2 are the best verified results in all scales.

In the next subsection, an optimal PBF for a specified

individual X will be found to integrate the various verified

results and increase the verification performance.

4.3. Integration via positive boolean function(PBF)

PFB has been successfully applied on the design of stack

filters. The main function for stack filters is to remove the

noises, detect the edges, etc. They are only used in image

processing or signal processing fields. In this section, we

will use the PBF to integrate the verified results in various

scales. We briefly review the operation of PBF below.

Wendt et al. [23] have shown that a stack filter can be

represented by a corresponding PBF. The PBF is exactly

one sum-of-product form without any negative components.

For instance, the PBF of f ðx1; x2; x3Þ ¼ x1x2 þ x2x3 þ x3x1

is a median function of an observation window of three

variables. Let Xn of length n be the signal processed using a

stack filter Sf ð·Þ: The signal Xn can be decomposed into

L 2 1 binary signals Xl
n ¼ ðxl

1; x
l
2;…xl

nÞ [ {0; 1}n by using

Table 1

The verification results at various scales

ID Scale 0 Scale 1 Scale 2 Scale 3

Y ; 0 (20.00%,0.00%) (13.33%,0.00%) (6.67%,0.74%) (6.67%,1.48%)

1 (0.00%,0.00%) (0.00%,0.00%) (0.00%,0.00%) (6.67%,0.00%)

2 (0.00%,0.00%) (6.67%,0.00%) (6.67%,0.74%) (6.67%,4.44%)

3 (86.67%,0.00%) (73.33%,0.00%) (73.33%,0.00%) (73.33%,0.00%)

X; 4 (6.67%,0.74%) (6.67%,2.96%) (6.67%,3.70%) (6.67%,0.74%)

5 (0.00%,0.74%) (0.00%,0.74%) (0.00%,0.74%) (20.00%,0.00%)

6 (13.33%,0.00%) (33.33%,0.00%) (33.33%,0.00%) (20.00%,0.00%)

7 (53.33%,0.00%) (33.33%,1.48%) (26.67%,5.19%) (20.00%,5.19%)

8 (0.00%,0.00%) (0.00%,0.00%) (0.00%,0.00%) (6.67%,0.00%)

9 (26.67%,0.00%) (26.67%,0.00%) (26.67%,0.00%) (26.67%,0.74%)

C.-C. Han / Image and Vision Computing 22 (2004) 909–918916



the threshold function as follows.

xl
i ¼ TlðxiÞ ¼

1 if xi $ l;

0 else
:

(
ð6Þ

Based on the threshold decomposition property, the output

value of the stack filter Sf ðXÞ can be obtained from the

summation of the binary values generated from the PBF f ð·Þ

in the following formula:

Sf ðXnÞ ¼ Sf

XL21

l¼1

Xl
n

 !
¼
XL21

l¼1

f ðXl
nÞ: ð7Þ

Wendt et al. [23] have shown that the necessary and

sufficient condition for a Boolean function to possess

stacking property is that it must have a PBF. An n-input

Boolean function f ð·Þ is said to possess stacking property if

f ðxl
1; x

l
2;…; xl

nÞ $ f ðyl
1; y

l
2;…yl

nÞ ð8Þ

when xl
i $ yl

i for all i; and l ¼ 1;…; L 2 1.

The mean absolute error (MAE) value CðSf Þ which is the

measurement between the outputs of the stack filter Sf ðWð·ÞÞ

and the desired signal Sð·Þ; can be defined as

CðSf Þ ¼ E½lSð·Þ2 Sf ðWð·ÞÞl�; ð9Þ

where Wð·Þ is the input signal. According to the stacking and

the threshold decomposition properties [24], the multi-level

MAE is decomposed into the sum of the absolute errors

incurred on each of the levels and defined as follows.

CðSf Þ¼E
XL21

i¼1

siðtÞ2f ðwiðtÞÞ

" #					
					 ðbythresholddecompositionÞ

¼E
XL21

i¼1

lsiðtÞ2f ðwiðtÞÞl
" #

ðbystackingpropertyÞ

¼
XL21

i¼1

E½lsiðtÞ2f ðwiðtÞÞl�; ð10Þ

in which, value L ¼ 256 is the quantized number in a gray

image, and f is a PBF. The binary values siðtÞ and wiðtÞ are

the output values of a threshold function at position t in a

gray image. The optimal stack filter is defined as a PBF

which can minimize the MAE between the desired and the

output signals.

The problem of integrating the verification results is

reduced to the problem of finding an optimal PBF. The

verified results at a specified scale can be considered as a

binary random variable. The distance vector of a sample is

considered as a realization x and quantized into L levels

(L ¼ 1000). This distance vector can be converted to binary

vectors by the thresholding function. In the supervised

training stage, the training samples were used whose

identities were known and predefined. If sample x belongs

to an individual X; the desired value is set to be zero.

Otherwise, if sample x belongs to class non-X; D �X; the

desired value of sample x is one. The integration function is

defined to be a PBF. The classification errors as defined in

Eq. (10) will occur at (1) the samples not belonging to class

DX being classified as the elements of class DX ; i.e. sð·Þ ¼ 1;

f ð·Þ ¼ 0; or (2) the samples belonging to class DX not being

the elements of class DX , i.e. sð·Þ ¼ 0; f ð·Þ ¼ 1: The best

classifier can be generated from the optimal PBF with the

minimal classification errors incurred at all levels. In finding

the optimal PBF, both training samples in classes DX and

D �X were equally created for the simplification of

implementation. Since the samples in class DX are relatively

few as opposed to those in class D �X; some extra samples for

class DX were generated by the bootstrap methodology for

the accuracy of PBF. MN artificial generating samples were

created by duplicating M samples N times for individual X:

Another MN samples were also randomly selected from N

another persons to generate the same sample size of classes

DX and D �X: These 2MN samples were inputted in the search

of optimal PBF. Here, values M and N are, respectively, set

to be 10 and 20 in this study. In the duplication process, the

ROI P1P2P4P3 is randomly rotated by 25 to 58, resized by

97–103%, and shifted in x or y axis by 22 to 2 pixels. The

palmprint features in multiple resolutions are obtained from

the process as stated in the preceding contexts. R distances

in R scales are inputted to the optimal PBF. The output of

the optimal PBF will be the integration results of the

distances in various scales.

However, finding the optimal PBF needs lots of

computational time because that a large number of PBFs

have to be checked. A fast method was proposed in our

previous work for finding the optimal stack filter (i.e. an

optimal PBF). More details can be referred in reference [25].

5. Experimental results

In this section, some experimental results were

implemented to show the effectiveness of our proposed

methods. A database was constructed by collecting 1500

hand images from 50 persons. This database was con-

structed over one year. In average, the images per person

were grabbed during two months. These images were all

grabbed from the students or teachers in university by CCD

camera-based devices. Most of them are male in the

constructed database. In the experiments, 10 images of a

person were randomly selected and used to train the model

in the enrollment stage, and the other 20 images were used

to test the performance of our approaches. Each image was

processed by the hand segmentation, the ROI locating of

palmprint, and the feature extraction of hand geometry, to

obtain the feature vectors of length 11. The similarity values

between the input samples and the reference templates were

calculated next. In the verification process, 20 test images of

a specified person X were tested to calculate the FRR value,

and the images of other persons (980 images of 49 persons)

were used to calculate the FAR value. The threshold value

for the coarse-level (hand geometry) verification module
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was set to be 4. The performance for these 50 persons is

FRR ¼ 1.6% and FAR ¼ 36.3%. In the fine-level verifica-

tion stage, four feature vectors of length 500 from scales

0 to 3 were reduced to the vectors of length 50 by using the

PCA method. The image samples of a considered individual

X (positive samples) plus those samples of another

20 persons (negative samples) were collected to obtain the

reference vectors in four scales by making use of the GLVQ

approach. The verified results for the specified individual in

four scales were integrated to obtain a final verification

result via an optimal PBF. The FRR and FAR values for

50 persons using the palmprint features are 4.0 and 9.1%,

respectively. Finally, the coarse-level (hand geometry)

and the fine-level (palmprint) verification modules were

sequentially combined to obtain the results of FFR ¼ 5.3%

and FAR ¼ 3.7%.

6. Conclusion

In this paper, two hand-based features have been adopted

for PA. The statistical features of palmprint are extracted

and matched with a coarse-to-fine verification scheme.

The experimental results have been demonstrated to show

the effectiveness of our proposed approach. In the future, the

restriction of capturing devices, i.e. sticks, will be removed

for more users such as the children. Without this restriction,

the effective algorithms for locating the ROI of palmprint are

needed. The palmprint images will be segmented to obtain

the lines and verified by the effective matching algorithms.
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